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We theoretically investigate loop currents generated by a Berry phase that arises from spin vortices and
argue that a coherent collection of them forms a supercurrent in cuprate superconductors. First, we explain
enhanced Nernst signals in cuprates using a fictitious electric field that arises from flow of spin vortices with
their centers at sites where lattice-distortion-clad holes (small polaronic holes) reside. Assuming the coexistence
of holes in large and small polaron forms, the magnitude of the Nernst signal is shown to be proportional to
density and mobility of small polarons, and expressed as ey = ¢3T e *3"WksT/(1 + Qam*kgT)/(ngh*)e™"/ksT),
where c¢3 is a constant, W, is the small polaron formation energy, n; is the surface density of sites, and m* is
the effective mass of the large polaron; by treating unknown parameters as fitting parameters, this formula
follows the experimental temperature dependence very well. From the obtained W, value, it is indicated that
superconductivity occurs at temperatures where almost all of the holes become small polarons; thus, the
conventional current generation mechanism is ineffective at temperatures around 7.; however, loop current
generation by the spin Berry phase is effective. We calculate the superconducting transition temperature as
an order—disorder transition temperature of the loop currents. The doped hole concentration, x, dependence
of the transition temperature is obtained as 7, = T In x/x, and agrees with experimental data, where 7, and
Xo are treated as fitting parameters. Lastly, we briefly mention an artificial nanostructure that generates a

persistent current by utilizing the spin Berry phase.

I. Introduction

Since the discovery of high-transition-temperature supercon-
ducting cuprates in 1986,' extensive experimental and theoretical
studies have been conducted. Despite all of those efforts, a
theory that accounts for all major experimental facts is still not
obtained. What makes the problem very difficult is that electric
conduction cannot be described by the conventional transport
theory based on Bloch electrons; in this system, parent
compounds are Mott insulators where an insulating behavior
with antiferromagnetic spin order occurs due to strong Coulomb
repulsion between electrons.? When holes or electrons are doped,
metallic conductivity appears, and if the doping is sufficient,
superconductivity is realized. The metallic conductivity here is
very anomalous; for example, (1) the magnitude of a metallic
conductivity much less than the so-called loffe—Regel—Mott
limit is observed;* (2) local spin correlation survives;*> (3) a
disconnected arc-shaped “Fermi surface” is observed;® and (4)
very large Nernst signals are observed in Nernst effect
experiments.”? This anomalous metallic phase occurs below
the temperature 7%, and is called the “pseudogap phase” since
many phenomena associated with an energy gap formation are
observed. In this phase, very large Nernst signals are observed;
thus, it is suggested that fluctuating superconductivity already
starts in this phase.!?

In addition to the strong Coulomb repulsion or electron cor-
relation, hole—lattice interaction is also strong. There are a number
of experimental results that indicate that holes become small
polarons at low temperatures. EXAFS experiments observed Cu—O
bond length fluctuations!! that seem to arise from small polaron
formation; the magnitude of the bond length fluctuations agrees
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with those obtained by molecular orbital cluster calculations.'? The
mid-IR peak observed in optical conductivity measurements'? is
most likely due to small polarons;'* indeed, both Cu—O bond length
fluctuation and appearance of the mid-IR peak occur below 7.1
It is also worth noting that very recent EXAFS measurements on
La; g5Sr9.15Cu;—,Mn,O4 (M = Mn, Ni, Co) have revealed a direct
connection between local lattice distortions and superconductivity.'®

A theory for cuprate superconductivity also has to explain
the local antiferromagnetic order that persists in the pseudogap
phase. An hourglass-shaped magnetic excitation spectrum that
retains the antiferromagnetic spin wave excitation spectrum at
high energies is observed in the inelastic neutron scattering
measurement.*> Currently, there are two models that explain
this spectrum. One is the stripe model, where the doped holes
create one-dimensional channels for electric conduction (“stripes’)
in the antiferromagnetic insulating background.® In this model,
the observed magnetic excitations are explained to arise from
the remaining antiferromagnetic part. The other is the spin vortex
model, where spin vortices with their centers at hole-occupied
sites are assumed to exist in the antiferromagnetic background.!”
The experimental results agree better with the spin vortex model
since it gives a circular peak distribution in constant-energy
slices of the excitation spectrum; on the other hand, the stripe
model gives a rectangular one, which disagrees with the
experiment. It is also noteworthy that the spin vortex model
explains the Drude-like peak observed in the optical conductivity
measurement.'>'3 This peak is often attributed to the coherent
motion of doped holes; however, this attribution contradicts the
small polaron formation that is strongly suggested by the
EXAFS experiment; it also contradicts the assignment that the
mid-IR peak is due to small polarons. Currently, the spin vortex
model is the only one that explains all three major peaks in the
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optical conductivity'® in a consistent manner, the Drude-like
peak to spin wave excitations, the mid-IR peak to small polaron
formation, and the high-energy (~1.5 eV) peak to the charge
transfer between Cu and Os within a CuO cluster.

Recently, a novel electric current generation mechanism,
which becomes possible in the presence of spin vortices, was
proposed by the present author.!” As explained above, it is
expected that spin vortices exist in cuprates; thus, this new
mechanism is applicable to them. In this mechanism, an electric
current is produced by a Berry phase arising from the spin
vortices (a spin Berry phase), and a macroscopic current is
realized as a collection of loop currents that circulate around
spin vortices."”

The Berry phase? (also known as the quantum geometric
phase)?' from a spin vortex is similar to the one first found in
the E ® e Jahn—Teller system.?? In the E ® e Jahn—Teller case,
the atomic motion around a crossing point of the adiabatic
potential surfaces is under the influence of a fictitious magnetic
field;?? in the spin vortex case, the electron motion around a
center of a spin vortex is under the influence of a fictitious
magnetic field. In both cases, the Berry phase arises from a
requirement of the single-valuedness of wave functions. In our
previous work,'? a stable loop current roughly proportional to
the gradient of the Berry phase is shown to arise around spin
vortices.

In this work, we investigate the superconducting transition
from the pseudogap phase. We explain it as an order—disorder
transition of the loop currents arising from spin vortices. First,
we consider a fictitious electric field** from the Berry phase.
We successfully explain the temperature dependence of the
observed enhanced Nernst signal® and the magnetization ac-
companying it as due to the temperature dependence of the
number of loop currents and their mobility. This agreement
supports the idea that loop currents exist around spin vortices;
it also supports the view that doped holes are in equilibrium of
small and large polarons. Superconductivity occurs below the
temperature where almost all of the holes become small
polarons; thus, the conventional current generation mechanism
is ineffective at temperatures around 7. (7. is the supercon-
ducting transition temperature). Only loop current generation
by spin vortices are effective around 7. In this situation, the
superconducting transition may be regarded as an order—disorder
(Ising-model-type) transition of loop currents; that is, the
superconductivity is realized when a long-range coherence is
established among loop currents. We derive the doping con-
centration dependence of 7, based on this view. By obtaining
parameters of the order—disorder Hamiltonian from the fitting
to experimental data, a good agreement between theory and
experiment is achieved. Lastly, we discuss a possibility of
constructing an artificial nanostructure that generates a persistent
current by utilizing the Berry phase from spin vortices.

II. A Berry Phase from Spin Vortices and a Fictitious
Magnetic Field

In this section, we briefly review the appearance of a Berry
phase and a fictitious magnetic field that originate from spin
vortices. The key ingredients are a strong Coulomb interaction
that makes the half-filled system (system with the equal number
of conduction electrons and lattice sites) an antiferromagnetic
insulator (also called the Mott insulator)? and a strong hole—lattice
interaction that makes doped holes small polarons.

Let us take a two-dimensional square lattice in the x—y plane
and consider the Hubbard model given by
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where the first and second terms describe electron hopping and
on-site Coulomb interaction, respectively. The x—y plane here
corresponds to the CuO, plane of cuprates. Transfer integrals
t;j are t if i and j are nearest-neighbor sites and 0 otherwise.
The parameters are assumed to satisfy the condition U > t; in
this situation, the ground state for a half-filled system is known
to be an antiferromagnetic insulator.

When holes are doped, we assume that they become small
polarons due to strong hole—lattice interaction. The hole—lattice
interaction is not included in the Hamiltonian in eq 1 but is
present in the total Hamiltonian for the electron—lattice system.
The hopping rate of the small polarons is very small; thus, the
system is in an “effectively half-filled Mott insulator (EHFMI)
state”!? where electrons are in an effectively half-filled situation
in which doped holes can be treated as almost immobile
vacancies. If we consider the limiting case where small polarons
are immobile, the Hamiltonian in eq 1 can be used as an
approximation for the total Hamiltonian; in this case, polaron-
occupied sites are removed from hopping-accessible sites. We
use this approximation in the following.

We further assume that spin vortices are created with their
centers at hole-occupied sites. Then, current flow becomes
possible in the EHFMI due to the fact that local loop currents
are generated around spin vortices."”

In the presence of spin vortices, new electron-creation
operators a; and b} and new electron annihilation operators a;
and b; are convenient; the latter are related to the original
electron annihilation operators cj and ¢ by

(aj) _ eixj/z eigj/z e—igj/z (cﬂ) o
b. \/E _eig/z e—igj/z Ci

J

where the polarization of spin is assumed to lie in the x—y plane
and &; is the azimuth angle of the spin at the jth site. A very
important point here is that a phase factor exp(iy,/2) appears in
eq 2 in order to ensure the single-valuedness of the transforma-
tion matrix. It compensates for the sign change of e*/> when
& is shifted by 277; we may take ¥ = & for that purpose, but
other choices are also possible. The phase /2 is a Berry phase
arising from spin vortices. We will see that different choices of
% correspond to different loop currents around spin vortices. A
natural choice for y may be a harmonic function that describes
the winding number associated with it; this point will be seen
later.

Using the new creation and annihilation operators, the
Hamiltonian is now written as

H=K,+ K, + K, + H, 3)
where
o E — &
K, = — Ztkjeﬁw %) cos %aza_i
J
o E — &
K, = — Z 1% cos %b;bj 4)
k7
- ey o ok S s i
Ky = =iy 5" sin === ab; + b))
k7
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and
Hy,=UY ajapbb, )
7

The zeroth order Hamiltonian H, is given by
H,=K,+ K, + H, (6)
The zeroth order ground state for the EHFMI is given by

l00= |'| ajlvacO 7
J

where j runs through all electron-occupied sites. In the EHFMI,
a spin order exists; in the zeroth-order approximation, it is given
by

h e
DIS;I00= 5 cos &  IS}100= 7 sin &, DIS;100= 0
®)

where S}, §7, and Sj are x, y, and z components of spin operator
at the jth site. An antiferromagnetic order is obtained by
choosing & — &, = m for nearest-neighbor pairs [4, j[I

When the spin configuration is different from that of
antiferromagnetism, which we assume to occur by the spin
vortex formation, a “fictitious magnetic field” arises. This point
is seen as follows; effects of a magnetic field B = [ x A (A
is an electromagnetic vector potential) can be taken into account
by modifying transfer integrals as

. k
by = tyexplid [ Avdr] ©)

where ¢ is the speed of light and ¢ is the charge; thus, the
] w,— H k . .

appearance of factors e %) = @27 Udr i eq 4 can be

interpreted such that a magnetic field (“fictitious magnetic field”)

B =[x Ag (10)

with the vector potential

A = ZIDX (11)

exists in the system.

Actually, the zeroth-order state |0llis currentless even if the
fictitious magnetic filed exists. However, if the perturbation Kj,
is included, current-carrying states appear. Numerical calcula-
tions using a mean field theory indicate that the fictitious
magnetic field produces current roughly given by'®

j = —Chly (12)

where C is a constant and y is a harmonic function. Actually,
the conservation of charge requires that y be a harmonic
function, that is, it satisfies %y = 0.

In Figure la, an example of spin vortices embedded in an
antiferromagnetic background is depicted. Each spin vortex is
accompanied by a loop current. In Figure 1b and c, two different
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current patterns that are generated by the same spin vortex
pattern are depicted; the difference is due to the use of different
% Note that the single-value condition in the unitary transforma-
tion in eq 2 does not allow zero current states. Although each
loop current is rather localized around each center of the spin
vortices, a macroscopic current can be generated as a collection
of loop currents if the number of loop currents is large enough;
an example is depicted in Figure 1d. If spin vortices are stable,
loop currents produced by them are also stable. A macroscopic
current such that as given in Figure 1d can be a stable current
if spin vortices are intact for a long time.

III. Fictitious Electric Field and Enhanced Nernst Signal

The time variation of a vector potential A is known to give
rise to an electric field E = —(1/c)(0A)/(dt). Likewise, a time-
dependent Ag. gives rise to a fictitious electric field** given by

10A¢ A _.
- quX

fic — c ot

13)

This is not a true electric field, but it exerts force on electrons.

When a temperature gradient exists, a flow of small polarons
occurs. Then, loop currents around them move. Consequently,
% becomes time-dependent; thus, a fictitious electric field appears
according to eq 13. In the following, we will show that enhanced
Nernst signals observed in the pseudogap phase of cuprates’°
can be explained using this fictitious electric field.

The Nernst signal is measured by an experimental setup
shown in Figure 2a; a temperature gradient 7T is created in
the x-direction, and a magnetic field B is applied in the
z-direction. The fictitious electric field Eg. exerts force on
electrons in the y-direction; then, a real electric field develops
that balances the fictitious electric field (E = —Eg.) by the
accumulation of charges on edges as in the Hall effect case.
The Nernst signal is defined as the developed electric field in
the y-direction divided by the temperature gradient in the
x-direction.

Let us consider a rectangular system shown in Figure 2a and
derive a formula for the Nernst signal en. The system has a
length L, in the x-direction (0 < x < L,) and a width L, in the
y direction (0 = y < L,). Using eq 13, the y component of E =
—Eg. at x = (L/2) is calculated as

A o0 L )_ A .(Lx )_.(Lx )]
Ey_quyfo dyayx(z’y ~ 2qL | b)) =50
(14)

Diamagnetic currents arise around spin vortices given by eq
12; then, the phase change of y by the vortex flow from x = 0
to L, is given by

Ay = x(LJ2,L) — x(L,/2,0) = —22N,, (15)

where Ny, is the number of loop currents.

We denote an average velocity of the small polaron flow by
v; then, At = L,/v will be the average time for the flow from x
= 0 to L,. The time derivative of the phase difference is
approximately given by

Ay _ 27N,

t L

(16)
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Then, substituting eq 16 and ¢ = —e into eq 14, the electric
field in the y-direction is obtained as

p hon,,
Y 2e

a7

where n,, is the surface density of loop currents given by n, =
Nw/L.L,. Finally, the Nernst signal is obtained as

_ hony,
N 2010

(18)

A large magnetization is also observed in the Nernst effect
experiment.® If it is produced by loop currents around spin
vortices, it should be roughly proportional to n,. Then, the
temperature dependence of M is essentially that of ny,.

In order to obtain the temperature dependence of n,,, we
consider the situation where small polarons coexist with large
polarons of effective mass m*.> The equilibrium condition
between “band-like” large polarons and localized small polarons
is given by

~
o
~
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where W, is the polaron stabilization energy, n, is the surface
density of sites, and x is the doping concentration. Here, the
lattice constant of the two-dimensional square lattice of the CuO,
plane is taken to be the unit of distance. The magnetization M
is given by M = —ydn,,, where y is the average magnitude of
a magnetic moment for a loop current and d is the distance
between nearby CuO, planes. Using n,, obtained from eq 19,
the magnetization is given by

—M = ¢,/(1 + ¢,Te” ") (20)

where ¢, = xyd and ¢, =Qam*kg)/(nh*). In Figure 2b,
experimentally observed M and its fit by treating c¢; and ¢, as
fitting parameters are depicted. It is seen that the fit follows
experimental results quite well. The obtained W, from the fit
indicates that almost all of the doped holes become small
polarons in the superconducting phase.

Next, we obtain a formula for ey; from eq 18, it is
proportional to a product of n, and v. Since v is proportional
to the mobility 4 (v = ullI71), ex should be proportional to a
product of n,, and u.
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Figure 1. Spin vortices and the currents generated by them. (a) Two spin vortices embedded in the antiferromagnetic background. The spin
polarization direction at the jth site in the x—y plane is given by (cos &, sin &), where & = z(j, + j,) + tan™'[(j, — M)/(j. — M,)] — tan"'[(j, —
A)/(j. — Ay (where (j,, jy) is the coordinate of the jth site and (M,, M,) and (A,, A,) are coordinates of centers of spin vortices at M and A,
respectively). (b) A collection of loop currents given by j = —CLly, where C is a positive constant; the phase y at the jth site is given by y; =
—tan’][(jy — M)/(j. — My] + tan’][(jy — A)/(jx — A)]. (¢) The same as (b) but for the current pattern produced by the phase y given by y; =
—tan"[(/', — M)IG. — MJ)] — tan"[(/', — A/, — AYI. (d) A macroscopic current generated by a collection of loop currents; loop currents with
winding number +1 and those with —1 are aligned in parallel lines. The definition of the winding number is given in eq 32. The total number of
loop currents is 16 in the figure. Between the two lines, a directional current flow is realized with almost zero current outside.
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Figure 2. Experimental setup for the Nernst effect experiment and temperature dependence of magnetization M and Nernst signal ey for the
underdoped Bi,Sr,CaCu,0344 (Bi2212, T, = 50 K). (a) Experimental setup. (b) Temperature dependence of M; it is fitted by eq 20 with ¢; = 300,
¢ = 10, and Wy/ks = 300 K. (c) Temperature dependence of ey; it is fitted by eq 22 with c; = 5200. Dots are experimental results.®

For an activation-type small polaron hopping,? u is given by
U= MOTflefWH/kBT (21)

where Wy is the activation energy for the polaron hopping and
Uo 1s a constant. Wy may be related? to W, as Wy = 0.5W,,, and
we use this relation in the following.

Overall, the Nernst signal is expressed as

en = T 'e ST (1 + ¢ 1”07y (22)

where ¢3 = xhuo/2e is a constant.

In Figure 2c, experimentally observed ey and its fit by eq 22
by treating c; as a new fitting parameter are depicted. The fit is
very good except at high temperatures. At those temperatures,
the mobility given in eq 21 is probably too simple; effects of
deactivation by collisions with phonons and magnons should
be taken into account. However, the good agreement between
the theory and experiment suggests that the above formula for
en captures essentials of the temperature dependence of the
Nernst signal. This is strong support for the existence of loop
currents with their centers at small polarons in cuprates.

IV. Superconducting Transition As an Order—Disorder
Transition of Loop Currents

In the previous section, the idea that loop currents exist around
spin vortices is supported. It is also indicated that almost all of
the doped holes become small polarons at temperatures around
T.. In this situation, a macroscopic current is possible only if it
is generated by a collection of loop currents. In this section,
we derive the doping concentration dependence of T, by
regarding it as an order—disorder transition of loop currents;
that is, we consider that a persistent current flow becomes
possible when a long-range coherence is established among loop
currents generated by spin vortices.

When both a real magnetic field B = [J x A and the fictitious
magnetic field Bg. = 0 x Ag, exist, the electric current given
in eq 12 becomes'”

i, = —qC([IX + %A) (23)

This current is a gauge invariant as is shown below; for the
gauge transformation

A'=A+0f (24)
electron operators are modified as
o = i xp|—izL ) (25)
which, according to eq 2, means that y is modified as
Xi=x— ;%l_z]j (26)

Then, from eqs 24 and 26, the following sum is gauge
invariant

] Q L %
Oy + 1A = Oy + £1A 27)

Therefore, the electric current density j. is gauge invariant.
From eq 23, the energy increase due to loop currents may be
obtained as

U= %h [ dzr(DX + %A)z (28)
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This energy formula satisfies a required relation between U
and j.

ou

jo=—c5y (29)

We will use this very simplified energy formula U as the
Hamiltonian for the interaction among loop currents in the
following.

In our previous work,'® it is suggested that at temperatures
around T, spin vortices are created around all doped holes. We
assume this situation.

Let us consider the case where a magnetic field is absent;
we may put A = 0. Then, eq 28 is expressed as

_ nCh ¥ 7Ch
U==">w 1—+—waln— (30)

i =]

This formula is derived by expressing [y as a sum of loop
currents

O =Y Ox) 3D

where y(i) is the phase introduced to compensate the sign change
caused by a single spin vortex at the ith site; w; is the winding
number for it defined by

w;, = %T fq Oy (i) +dr (32)

where C; is a closed path encircling the ith site. R, and a. are
upper and lower cutoff radii of each loop current, respectively,
and r;; denotes the distance between the ith and jth sites.

If the magnetic field is absent, the sum of loop currents will
be 0 where each loop current has the winding number +1 or
—1. For simplicity, we only retain adjacent pairs in the second
sum ) ;- in eq 30, replace r; by its average value given by
1/(7tx)"2, and take a square lattice of loop currents with a lattice
constant 1/(;tx)"2.

With the above simplifications, the following very simple
interaction potential for loop currents is obtained

Ugp = 5 - In = waw, (33)

where x is introduced through

R =—— (34)
VX,
and the sum is taken over nearest-neighbor pairs.

The interaction potential Uy, is equivalent to that of an Ising
model for antiferromagnets if the hole concentration satisfies x
> Xo; two loop currents w; = +1 and —1 correspond, respec-
tively, to up and down spin states.

If T. is identified as the order—disorder transition temperature
of loop currents, it is given by

Koizumi

T,=T,In > (35)
X,

where Ty = 1.147Ch is a constant.

In Figure 3, the doping dependence of 7. in underdoped
samples is depicted. 7, and x, are obtained from the fitting to
experimental data. The experimental data for La214% shows
anomalous depression of T, around x = 1/8, and the agreement
is not good around there; otherwise, the fit follows the
experimental data very well.

At T = 0 K, the insulator—superconductor transition is
observed at around x = x,.> This experimental fact is explained
in the present theory, accordingly; at 7= 0 K, the loop current
generation by spin vortex formation is the only effective current
generation mechanism since small polaron hopping is negligible.
Therefore, if the hole density is above a critical value x,, the
electric current is a collection of loop currents, which is coherent
at T = 0 K; thus, the system is a superconductor. However, if
the hole density is less than xo, the density of loop currents is
not enough to establish a long-range coherence; thus, the system
is an insulator.

If an applied magnetic field is present, a loop current pattern
that is different from that for the “antiferromagnetic” loop
current order mentioned above will be realized. If we denote
the wave function for the “antiferromagnetic” pattern by W
the wave function for a different current pattern is given by

Ne

W= exp(—i ) g)W (36)
k=1

where N, is the number of electrons. The phase g is given by

LT M, s T A
g= Yt T—— — Yan ' —— (37

78 =M, T Jy = A

where, in the sum over M’', centers of loop currents whose
winding number is changed from +1 to —1 are included;
similarly, in the sum over A', centers of loop currents whose
winding number is changed from —1 to +1 are included. The
flexible change of loop current pattern by eqs 36 and 37 may
explain the very sensitive response of the supercurrent against
an external magnetic field.

V. An Artificial Nanostructure That Generates a
Persistent Current

In the previous section, it is expected that if a long-range
coherence of a collection of loop currents generated by spin
vortices is established, a macroscopic persistent current will be
realized. From the fitting to experimental data, we obtain xy =
0.05. This value corresponds to R, = 2.5, which suggests that
if the distance between nearby holes is less than 5 times the
lattice constant, interaction between loop currents is strong
enough to establish coherence.

We may construct a nanostructure that generates persistent
current from the above observation. An example is depicted in
Figure 4, where a directional current is created between two
lines of centers of loop currents. The situation here is analogous
to a magnetic field produced in a solenoid; the magnetic field
inside of the solenoid corresponds to the directional current,
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Figure 3. Doping concentration, x, dependence of the transition
temperature 7.. Experimental data are fitted using eq 35 by treating x
and Ty as fitting parameters; x is taken to be 0.05 for all. The solid
line is the result for Bi,Sr,CaCu,0g44 (Bi2212) with T, = 85 K. The
dashed line is the result for La,_, Sr,CuO, (La214) with T, = 49 K.
The dots are experimental results.?®
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Figure 4. A macroscopic directional current generated by lines of loop
currents. The centers of loop currents are marked by 16 dots in (a); the
directional current flows between two lines of loop current centers. In
(b), the same directional current as that given in (a) is depicted with
its magnitude indicted by the gray scale.

and electric current in wires of the solenoid corresponds to
vorticity of the loop currents.

In the cuprate, holes are expected to exist at each center of
the loop currents; thus, if we arrange holes in this way
artificially, a persistent current will be generated, even if the
hole concentration is x < 0.05. Instead of holes, we may use
some atoms (for example, Mn) as the centers of loop currents.
In this way, we may obtain an enhanced stability in spin vortices.
If we find a way to construct such a spin vortex structure that
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is similar to one given in Figure 4 and which is robust even at
room temperatures, a room-temperature superconductivity may
be realized.

VI. Conclusion

In the present work, we have explained enhanced Nernst
signals in cuprates using a fictitious electric field that arises from
the flow of spin vortices. The good agreement between the
theory and experiment indicates that loop currents with their
centers at small polarons exist in cuprates, and the flow of them
is the origin of the enhanced Nernst signal. Using loop currents
around spin vortices, we explain the superconducting transition
in underdoped cuprates as an order—disorder transition of loop
currents. The obtained doping concentration dependence of the
transition temperature fits very well with experimental data.
Thus, it is suggested that a coherent collection of loop currents
generated by spin vortices is the supercurrent in cuprates. If
this is the case, an artificial structure that generates a persistent
current by a suitable arrangement of spin vortices will be
possible.
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